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Preface 

Tiiis report is the fifth concerned with research accomplished in 

connection with Navy Contract Nonr-433(00), between Dunham Laboratory, 

Yale University,, and the Office of Naval Research, Department of the 

Navy. In this report is given a discussion of the solution for a 

nonlinear differential-difference equation. Methods of attacking 

equations of this general sort are but imperfectly developed, and 

only approximate solutions can be obtained. The particular equation 

considered here may apply to several physical phenomena of interest, 

and the mathematical analysis is of interest in xtself. 

The research was carried on by W, J. Cunningham, with the 

assistance of J. G. Skalnikj the report was written by the under- 

signed. 

W, J. Cunningham 

New Haven, April, 1954 
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Abstract 

Certain physical phenomena appear to be described by the nonlinear 

differential-difference equation 

dx(t)/dt = [a - b x(t - T) x(t) 

where a, b, and T are positive real constants. This is an 

equation of growth in which the growth rate of a quantity depends in 

part upon the value of that quantity at some earlier time. Methods 

of obtaining exact solutions for this sort of equation are unknown. 

Approximate solutions for the equation are obtained by several 

analytical methods. Variable x can never go through the value zero, 

and thus reverse its algebraic sign. If x is positive and the 

product ar is small, solutions approach a limiting value a/b, 

either monotonically or with a decaying oscillation. If product ax 

is larger, a steady-state oscillation of definite amplitude occurs. 

If x is negative, solutions run off to negative infinity. 

Examples of solutions for particular values of the parameters 

are obtained with an analog computer. 
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i. 

I, Phenomena and Equation under Consideration 

There are certain liatural phenomena in which the magnitude of 

some quantity increases at a rate proportional to the magnitude itself. 

A simple example is the growth in population of an organism, where 

the number of new individuals appearing within any given short time 

interval depends upon the number of individuals present at the beginning 

2 
of the interval. Certain chemical or neuclear reactions may operate 

in a similar way, with the rate of reaction proportional to the amount 

of end product that is present. 

Phenomena such as these can be described mathematically by the 

differential equation 

dx/dt • ax (1) 

where x is a measure of the product in question, t is time, and a 

is a positive real constant, the relative growth rate. This equation 

is sometimes referred to as the equation of growth. Its solution can 

be written as 

* x » r.    exp(at) (2) 

where x  is the value of x existing at zero time. Curves repre- 

senting x as a function of t have the well-known exponential shape 

of Fig, 1, where a family of curves is shown for constant x  but 

several values of a. As t increases without limit, so also does x 

increase without limit, the rate of increase becoming proportionally 

larger. 

There are certain phenomena which appear to be governed initially 

I by an equation such as Eq, (l). However, as the quantity represented 

by x increases, some effect comes into play which reduces its rate of 

1, H, Margenau and G. II, Murphy. Mathematics of Physics and Chemistry, 
(Van Nostrand, New York, 1943), p, 33 

2, Wt Jc?t, Explosion and Combustion Processes in Gases, (McGraw-Hill, 
New York, 1946), p, 2G2 



I 

• 

QMQ 

FICJ. I       Exponential  functions satufu,ina    fq. (I) 

exponential 

r»cj. Z.    Exponential   curve    approximating  Q  parabolic   path. 
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increase. Ultimately x may approach a constant value. This might 

be the case for a colony of biological organisms in circumstances where 

the food supply or living space is limited. As the population of the 

organisms approaches the maximum which can be supported continuously, 

the rate of growth must be reduced in some way. On? hypothesis that has 

3 
been suggested is that the members of th« population somehow recognize 

that crowding is soon to occur. Upon making this discovery, they try 

consciously to reduce their reproduction rate. Because of a finite 

gestation time, the actual birth rate is not lowered until a definite 

time after an effort has been made to lower it. An equation describing 

this kind of operation is 

dx(t)/dt • [a - b x(t - T)1 x(t) (3) 

where a and b are positive real constants, T is a constant delay 

time, and x(t) and x(t - T) are values of x at the instants t 

and (t •>• -r), respectively* The effective growth rate in Eq# (3) is 

[a - b x(t - T)1 , It is less than parameter a by an amount propor- 

tional to the value of x existing at the time (t - T), earlier 

than the time t at which the derivative dx(t)/dt is evaluated. 

Another example where Eq, (3) might occur is in the control ff 

some reaction which fundamentally is governed by Eq, (l). In order to 

prevent the reaction running away, with catastrophic results perhaps, 

some modification is intentionally introduced into the system to 

reduce the reaction rate. The controlling mechanism, which senses 

the rate of reaction and takes steps to change it, requires a finite 

time to operate. If the delay time is of fixed value, x, the equation 

applying to the system is Eq, (3), 

3, This equation appears to have been introduced in the paper, 
G, E, Hutchinson, "Circular Causal Systems in Ecology", Annals of the 
New York Academy of Sciences, j>0, 221, (1948), 
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Still another example where this equation mi.ght arise is in the 

determination of the path of a controlled projectile. A mass particle, 

falling freely in a constant gravitational field with no retarding 

effects, follows a parabolic path* Furthermore, the curve of height 

as a function of time also is parabolic, since the horizontal component 

of velocity remains constant, and the horizontal position is propor- 

tional to time. An example of the relation between height and time is 

shown in Fig. 2. Coordinates x and t are chosen so that the vertex 

of the parabola is located at x • 0 and t = -t,. For convenience, 

positive x is plotted below the t-*axis. At zero time the particle 

is at the point x • x  and t = 0, The parabolic curve can be 

approximated over a part of its length by an exponential curve 

suitably chosen. Such a curve is shown also in Fig. 2. An actual 

mass particle, falling in the gravitational field of the earth, is 

retarded by the effect of resistance with the atmosphere. This retai- 

dation ultimately makes the vertical component of velocity constant, 

so that the curve of Fig. 2 would approach asymptotically a straight 

line of constant slope. The curve then could not be approximated by 

an exponential curve. 

Instead of the particle falling freely, it might be subject to 

control, the intent of which is to make the path become horizontal at 

some definite value of x. Again the control system requires a finite 

time to operate. If this delay time is constant, and if the free fall 

of the projectile is assumed to be essentially exponential in shape, 

Eq. (3) may describe the path which the projectile follows. 

Equations similar to Eq, (3) occur in economic studies of 

business cycles, where time delays occur in various steps of the 

business operations, 

4. R. M, Goodwin, Econometrica, 19, 1, (1951) 
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In general, any phenomenon in which some quantity tends to grow 

at an ever-increasing rate, but is subjected to a throttling effect 

involving a constant time delay, may be described by Eq» (3), 

The analysis of nonlinear differential-difference equations seems 

not to have been studied in great detail, so that methods of finding 

exact solutions for Eq, (3) are unknown. Qualitatively, however, it is 

apparent that if x(t) ever vanishes, the value of dx(t)/dt also 

must vanish. If this occurs, x can never become different from zero 

again. Thus, if x(t) is not zero, it must always retain the same 

algebraic sign, and the signs of both x(t) and x(t - x) must be 

identical. 

If x(t) is positive, the sign of dx(t)/dt may be either 

positive or negative, depending upon the relative magnitudes of the 

terms on the right side of Eq, (3), Thus, the appearance of oscil- 

lations with x(t) positive is allowed, A steady value, x(t) • 

x(t - x) *» a/b, for which dx(t)/dt = 0, also is a possible solution. 

If x(t) is negative, the sign of dx(t)/dt always is negative, and 

the solution can only go to negative infinity, 

II, Degenerate Case for T = 0 

A simple case of Eq, (3), and a profitable one to take as a 

starting point, is that for which the delay time x is zero, so that 

6 
the equation is 

dx/'dt -  a>. - bx , (4) 

5. R, Bellman and J, ", DanskLn, "Stability Theory of Differential- 
Difference Equations," Proceedings of Symposium on Nonlinear Circuit 
Analysis, (Polytechnic Institute of Brooklyn, New York, 1953), p. 107. 
This reference contains a long bibliography. 

6, This is the Verhulst-Pearl equation, See A, J, Lotka, Elements of 
Physical Biology, (Williams and Wilkins, Baltimore, 1925), p, 64. 
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This equation can be studied initially by considering a plot of the 

new variable y m dx/dt  « x as a function of ::» Such a plot is the 

7 
Poincare' phase plane, widely used in studying second-order equations. 

The phase-plane curve for Eq, (4) is shown in Fig, 3» 

There are two points, x • 0 and x = a/b, where y = 0, These 

are points of equilibrium, since no change can occur if x initially 

has either of these values. If x initially has some other value, 

changes will occur. If y is positive, x changes to become more 

positive, and vice versa. Thus, changes in x with respect to time 

take place in the directions indicated in Fig, 3» The point x = 0 

is unstable in the sense that x tends to run away from this point 

with time. The point x = a/b is stable, since x tends to converge 

toward this point. Both points are termed nodal points, with the 

curve of y as a function of x approaching from a definite direction. 

An exact solution for Eq, (4) can be found, considering it as an 

example of Bernoulli's equation. The substitution w = l/x is made, 

, giving the linear equation 

dw/dt + aw = b (5) 

which has the solution 

w - b/a + C exp(-at) (6) 

with C an arbitrary constant. Solution of Eq, (4) is, then, 

x = [b/a + (VxQ - b/a) expC-at)]"
1 (7) 

where x = x  at t = 0, o 

The nature of this solution can readily be compared with Fig, 3. 

As t becomes infinitely large, x always approaches the value 

x = a/b rconotonically. If x is positive, the curve for x as a 

7. N, Minor-sky, Nonlinear Mechanics, (J, W, Edwards, Ann Arbor, 1947) 
Part I 
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Fi^4       Soluttons     for    Eq.(4). 
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function of t is continuous. Its curvature is zero at the value of 

t making d x/dt = 0, which is the same as dy/dx = 0, This value is 

t * a  ln(a/bx - 1) at which instant x « a/2b, and the slope of 

the curve has its maximum positive value at this ncint. If x  is 
'0 

negative, the curve for x goes to infinity for the value of t 

causing the quantity in the bracket of Eq. (7) to vanish. This value 

is t = a  ln(l - a/bx ), 

A family of solution curves for Eq, (4) is shown in Fig, 4» For 

small values of x, the rate of growth is determined primarily by 

parameter aj for large values of x it is determined primarily by 

parameter b. The ultimate value of x depends upon the ratio a/b. 

These solution curves apply to Eq, (3) with T ~  0, and with both a 

and b positive. Extension to the case of reversed sign for these 

parameters is self-evident. 

i III, Differential Equation Approximately Equivalent 

III, 1. Derivation from differential-difference equation 

It is difficult to study the differential-difference equation, 

Eq, (3), because of the term x(t - x) which is evaluated at a time 

different from the other terms, x(t) and dx(t)/dt. A differential 

equation, with all terms evaluated at the same instant, is more easily 

analyzed. The term x(t - T) can be expressed by the Taylor's series 

x(t - T) «= x(t) - rdx(t)/dt + (x2/2)d2x(t)/dt2 

- (x3/6)d3x(t)/dt3 +  (8) 

where each term on the right side is evaluated at the same instant, t. 

If the delay time, T, is sufficiently small, its higher powers become 

<•* still smaller and the series of Eq, (8) may converge fairly rapidly. 
« 

Then a f,cod approximation tc the value of x(t - x) may be had from 
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only the first few terms of the series. If either x    or the higher- 

order derivatives are not sufficiently small, the series converges 

slowly, and many terms must be retained for accuracy. 

If only the first three terms of Eq» (8) are substituted into 

•&<!• (3)* the rebolt is 

0 0 0 0 
x - a tx + a x/bx + ax • a 3 (9) 

o o 
where a s 2/T , (3 2 a/b, and all terms are evaluated at the same 

instant. If T = 0, Eq, (9) reduces to Eq, (4) as it should. 

Equation (9) is a second-order, nonlinear differential equation, 

representing a system with a single degree of freedom, Uith certain 

choices of parameters its solutions are oscillatory, but only a single 

mode of oscillation at a single frequency can occur at a given time. 

A differential equation of infinite order would have resulted if all 

terms of Eq. (8) had been used. Such an equation would represent a 

system with an infinite number of degrees of freedom, having the 

possibility of simultaneous oscillation at an infinity of frequencies. 

The modification of the differential-difference form, Eq. (3), to the 

pure differential form, Eq. (9), has brought a simplification, but at 

the expense of losing the possibility of simultaneous oscillation at 

several frequencies. Techniques for studying a second-order equation, 

such as Eq. (9),» are well developed; equations of higher order are more 

difficult to analyze. It is not unreasonable to hope that solutions 

for Eq, (9) will be similar to those of Eq, (3), although exact cor- 

respondence cannot be expected. 

Equation (9) itself can be interpreted as applying to a physical 

system somewhat different from the examples used in connection with 

Eq. (3). If the nonlinear term, a x/bx, of Eq. (9) is neglected, the 
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remaining terms are linear, and the equation has the solution 

~" x - p + C exp(tA) cos(t/x + 9) (10) 

where C and 6 are arbitrary constants. This solution is the sum 

of a constant term and an oscillation with amplitude growing with time. 

The nonlinear term of Eq. (9) represents damping which varies inversely 

with the value of x. Thus the solution of nonlinear Eq, (9) might 

be expected to resemble Eq. (10), but with large damping occurring at 

those instants when x is small, It is not unlikely that the combi- 

nation of this damping with the growing exponential factor of Eq. (10) 

will result in the appearance of a limit cycle, an oscillation of 

fixed amplitude determined solely by the parameters of the equation and 

independent of initial conditions. Thus, Eq, (9) might apply to an 
• 

oscillator with a linear negative-damping term, and a positive-damping 

term varying inversely with the value of x, 3ince the positive 

damping would become infinite if x ever goes to zero, it is evident 

that a steady oscillation can occur only about some non-zero mean value 

of x, and this is provided by the constant term of Eq, (9), 

Equation (9) may be compared with the well-known van der Pol 

equation,  x - e(l - x )x + x «= 0, which also has solutions in the 

form of limit cycles. In the van der Pol equation, positive damping for 

large amplitudes of oscillation occurs symmetrically at either extreme 

of the cycle. In Eq, (9), positive damping occurs asymmetrically, 

being large only for instantaneous values of x on the negative side 

• of the mean value, P. 

8. N, Minorsky, ref, 7, p, 62 

9. N. Minorsky, ref, 7, p. H3 



Hi, 2. Singularity at xc » 0, yo - 0. 5 S 

The qualitative nature of the solutions for Eq, (9) can be deter- 

mined by studying the singular points  of the first-order equation 

resulting from the substitution, y • x, so that x • y = y dy/dx. 

This equation is 

.  _2f/_ _ ,A_X_ _ „ ^ a-i 
(11) 

& = a2l(T - l/bx)y - x + el 
dx y 

Its solution can be represented as a curve on the phase plane having 

as axes the coordinates x and y. Singular points are located at 

those valuas of x and y which make both numerator and denominator 

of Eq. (11) vanish simultaneously. Only one singular point is so 

determined; its coordinates are x = 3 and y = 0#* The nature of 
S S 

the solutions near this singularity can be found by replacing x and 
t 

y with 
•• 

x •+ x + u = S + u 
s      H 

i 
y —•* y_ + v * v a 

where u and v are small increments. If these substitutions are 

made in Eq, (ll), and only linear terms are retained, the result is 

dv = a [.(T - l/a)v - uj (12) 

du        v 

Since dv/du = (dv/dt)/(du/dt) - (l/v)(d2u/dt2), Eq, (12) is equivalent 

to the equation 

d2u/dt2 - <X
2
(T - l/a) du/dt + a2u - 0 .        (13) 

Solutions for this linear second-order equation depend upon the xcots, 

\, and \?, for the characteristic equation 

s2 - a2(x - 1/a) s + a2 = 0 . (14) 

10. N. Minorsky, ref. 7,  Ch. Ill 

* It is worth remarking that a second singularity is located at the 
origin, but that this point is not a simple singularity and cannot be 
discussed in the same manner as the first singular point. It is con- 
sidered briefly in Sec, III, 5, 
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These roots are 

Kv \2  - (ax2)'1 j(ax - 1) 1  [(ax - l)2 - 2a2x2Jl/2 j .   (15) 

Solutions are non-oscillatory if the roots are real quantities, that 

is, if  f(ax - l)2 - 2a2x2j > 0. This will be the case if 

(-2 ' - 1) * (ax) <: (2 ' - l)j otherwise oscillations will occur. 

Solutions are stable, in the sense that they do not increase without 

2 "*1 
bound as time increases, if (ax )  (ax - l)< 0. Actually, of course, 

parameters a and x were assumed positive at the beginning of the 

discussion, but they might be allowed to become negative under some 

conditionso The qualitative nature of solutions is depicted graphically 

in Fig. 5, The notation used here is that conventional in referring 

to the nature of a singularity, A focus refers to an oscillating 

solution with amplitude either decreasing or increasing; a node refers 

to a solution approaching a limiting value monotouically. The solution 

found in Sec, II, for a>0 and T = 0?    approaches the singular 

point monotonically, and the point is a stable node, 

• According to the theory of Liapounoff,  the nature of solutions 

for the nonlinear equation, Eq, (9), are similar to those of the linear 

equation, Eq, (13), so long as the variables u and v are suffi- 

ciently small. Thus, in the nieghborhood of the singular point, solu- 

tions of Eq, (9) have the properties illustrated in Fig, 5, 

III, 3, Approximate solution by variation of parameters, about (x ,y ) 
S  8 

Still more information about the solutions of Eq, (9) can be 

12 found by applying the method of variation of parameters,,   This method 

is useful where an oscillating solution occurs with only small changes 

in either amplitude or phase taking place within a cycle. In applying 
    

11. N. Minorsky, ref. 7, p, 51 

12. N. Minorsky, ref. 7, Ch. X 
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aT*(-V2-l) ^. 

unstable 
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unstable 
focus 

Fia. 5       Stability diqaram   for    solutions   of   Ea,  (S) 

near the  point      X$*0,  Us =  0. 
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14. 
the method, it i3 convenient to rewrite Eq. (9) as a pair of first- 

order equations, 

x - y 

2    2 (l6) 

y * a (T - ]/t*)y - a x + a 0 . 

If the term in y, with its nonlinearity, is omitted from the second 

of these equations, a generating solution is found as 

x = 3 + A sin(at +6) = 3 + A sin / 
(17) 

y - aA cos 4 

where A is the amplitude and 6 is the phase angle found from initial 

conditions, and 4 s (at + 6). This generating solution is then used 

in the complete form of Eq. (16), allowing both A and € to become 

time-dependent instead of being msre constants. The result of this 

substitution is 

A sin <f>  + k@  cos 4 - 0 

3    j (18) 

A     J      A A • J       3 ,    j a A coses 
Aa cos 4 -  Aa6 sxn 4  = a TA cos 4   - bp^Hft/p) ain fl . 

Solution for A gives 

A - a A cos 4 [y - a (1 + A/3 sin 4)     \» 

If A/3 « 1, approximately 

(1 + A/3 sin 4)"1 » 1 ~ A/3 sin 4 + A2/P2 sin2 ^ + • • •    (19) 

and A becomes 

A = a TA cos 4 "* a A/a cos ^ + a A /a3 cos / sin 4 

- a2A3/a32 cos2 ^ sin2 ^ + . . . . 

If the amplitude changes but slowly, only the average rate of change 

over a cycle need be considered. Since 

cos 4 = p(l + cos 24) 

cos 4 sin 4 • r(sin ^ + sin 3p) 

cos 4 sin / = -r(l - cos 4i^) 
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the average value of A over a cycle is 

(jh  - (ax2)-1 (ax - 1) A - b2A3AaV av 

- pA - qA3 (20) 

where p 5 (ax )  (ax - 1) and q 5 b /J+a"x 

In a similar manner, £ can be determined, and its average found 

over a cycle of ^. The result is 

(«)av " 0. (21) 

If the average value of A, given in Eq. (20), is used, the 

variation of amplitude with time can be found. This equation, another 

example of Bernoulli's equation, can be made linear by the substitution 

—2 
w * A . The resulting linear equation is 

dw/dt + 2pw • -2q. (22) 

Its solution is 

w - C exp(-2pt) + q/p (23) 

and thus, 

!- A - [c exp(-2pt) + q/p}"(l/2) (24) 

I where C is an arbitrary constant. If A = A  at t = 0, amplitude 

A is given as a function of time by 

A = A(t) = [q/p + (AQ~
2 - q/p) exp(~2pt)]"~(l/2) .      (2$) 

The solution just obtained is only approximate because just the 

first three terms of the infinite series of Eq, (19) were used. This 

approximation is good if A/3 «1, which is true only near the beginning 

of the growth of A and provided A <Cp, As the instantaneous amplitude 

increases, the solution is increasingly in error. 

Quantity p in Eq, (25) may be either positive or negative, as 

product ax is grer.ter or less than unity, respectively. If p is 

positive, amplitude A approaches a steady-state value, 

K  = (PA)V2 "  2(3(ax - 1)V2 (26) 
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as t becomes infinite. If initially A  is small, the amplitude 

grows, with its maximum rate of change occurring when A" « 0, at which 

l/2 instant A • A/3 ' • If p is negative, amplitude A vanishes as 

t becomes infinite. 

Plots of the variation of A with A, and cf A with t, as 

given by Eqs. (20) and (25), are shown in Fig. 6, Since Eq, (21) 

shows that the average frequency is constant, the approximate solution 

for Eq. (9), just found, is 

x = (3 + A(t) sin(2^2t/x + 9Q) (27) 

where A(t) is given by Eq. (25) and plotted in Fig. 6, and Q is a 

phase angle determined by initial conditions. 

Limitations can be set en the value of product ax allowed for 

this solution. The assumption is made initially that the change in 

amplitude per cycle of the oscillation must be small. If p is 

positive, the maximum value A  for the average rate of change of 

l/2 
amplitude occurs for the amplitude A = (p/3q)  • The relative rate 

of growth is then, from Eq. (20), k/k    = 2p/3, The period of the 

l/2 
oscillation is T = 2rr/a = 2V TTT. Thus, the maximum relative change 

in amplitude per cycle is nearly 

T kjkm = (2
1/2

TTT)(2P/3) - (2
3/2rr/3)(aT - D(ax)**1.     (2b) 

This quantity must be less than unity, say, te meet the assumption 

inherent in the method of solution. Thus, the requirement is that 

ax <[l - (23/2TT/3)-1]"1 = 3/2. (29) 

If p is positive, the amplitude approaches the steady value, 

1/2 A • 2p(ax - 1)"^ ', This amplitude exceeds the value 3 for at>5/4, 

and would then require instantaneous values of x to change algebraic 

sign. Since sign changes cannot occur because of infinite damping at 

x = 0, a more realistic upper limit for ax in the solution is ax<5/4t 
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x_ p is negative, the amplitude decays with time. According to 

Eq, (20), the maximum rate of decay occurs for the largest, or initial, 

amplitude. A rather crude estimate of the lower limit for ax can be 

obtained by disregarding the nonlinear term in Eq, (20), in which case 

the relative raxe of decay is A/A = p, independent of the amplitude. 

The relative change in amplitude per cycle is, then, 

T A/A = (2l/2TTT)(aT - lKa-c2)"1 . (30) 

This quantity must be greater than minus one, say, so that 

ax> (l + (2l/2rr)'"1]""1 = 4/5. (31) 

Thus, in order that the approximate solution found by variation 

of parameters be reasonably accurate, the value of product ax must 

fall within the limits 

4/5<(ax)<5/4. 

For these conditions, the approximate solution is an oscillation, 

1/2 
approximately sinusoidal with angular frequency 2  /x, having its 

mean value at x ~  |3. Its amplitude decays if ax<". 1. The amplitude 

1/2 approaches a steady value, A = 2p(ax - l)"1"' , if ax>l, 
s 

III, 4* Approximate solution by iteration, about (x ,y ) s s 

The approximate solution obtained by the method of variation of 

parameters consists of an oscillation, essentially sinusoidal in wave- 

form, with its amplitude varying in time. An oscillatory steady state 

is achieved if ax >1, More information about the waveform in the 

13 steady state can be found by a process of iteration. 

If the terms in x are omitted from Eq. (9), it becomes 

x + a2x = a2f> (32) 

13. J. J. Stoker, Nonlinear Vibrations, (Interscience Publishers, 
New York, 1950), p. 83 
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which has the solution 

i x -  p + A sin at (33) 

subject to the initial conditions of x * p, x - aA at t • 0, This 

generating solution can now be put into those terms of Eq. (9) in 

which x appears so as to give 

2 2 3 x+ax=ap+ a TA COS at 

- (a^A/bp) cos at (1 - A/p sin at 

+ A2/p2 sin2 at + . . - . ) (34) 

where the series is accurate only if A/p ^Cl. Use can be made of 

the identities 
i 

sin at cos at • fe) sin 2at 
2 

2 1 
sin at cos at • (-r)(cos at - cos 3at) 

to give 

x + a2x » a2p + a3A(x - l/bp - A2/4bp3) cos at 

+ (a3A2/2b p2) sin 2at + • • • • (35) 

In order to avoid a secular term in the solution, something which cannot 

occur since it grows indefinitely with time, the coefficient of cos at 

must be zero, or 

A - 2p(ar - l)^2. (36) 

This is the steady-state amplitude of oscillation, and is the same 

result found in Eq. (26). 

Solution for Eq. (35) is, then 

x « p + A sin at •» aA /6bp sin 2at + . . . .       (37) 

where the coefficient of a possible term in cos at is made zero to 

keep x • p at t • 0, 

The waveform of the steady-state oscillation is approximated by 

S Eq, (37), and considerable second-harmonic distortion is seen to be 

i 
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present. The relative amplitude of the second harmonic compared with 

the fundamental component is 

2nd/lst = aA/6bB2 - (2V*/3) (ax - D^UT)"*1.        (38) 

The largest value of ar which will keep instantaneous x positive 

(as is necessary) is ar = 5/4, For this value, the relative second 

harmonic is 2nd/lst • 1/5. 

A sketch of the resulting waveform is shown in Fig, 7. The presence 

of the harmonic actually makes x go negative momentarily in this 

example. The rise in x from values just greater than zero to large 

values occurs more slowly than does the drop from large values to small 

ones. 

It should be recognized, of course, that Eq. (37) is only approxi- 

mate because of the gross assumptions made in its derivation. It 

applies reasonably well only between the limits l<at<5/4» 

III. 5, Solution by isocline construction 

It is profitable to study in still more detail the solutions of 

Eq. (9) as represented graphically on the phase plane. In carrying the 

analysis further it is convenient to normalize the quantity y « x by 

defining a new variable z a ry • TX, Tha dimensions of z are then 

the same as those of x. In terms of z, Eq, (11) becomes 

dz _ 2C(1 - 1/bxx)z - x +  BJ f,Q\ 
dx "*        z uy) 

This equation gives the slope of a solution curve at any point vti the 

z-x plane. If this slope is assigned a constant value, say m, the 

locus of those combinations of z and x giving this assigned slope 

14 can be found. This locus is the isocline  curve connecting points 

I -  -"   
14. N. Minorsky, ref. 7, p. 20 
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of constant slope, m. Its equation is 

f: »-1 V&tfL i)  . w> 
Isocline curves for any assigned value of m pass through the 

singular point, x = 3, z • 0, found earlier. All curves also s      s 

pass through the origin, x • 0, z • 0, which is another singular 

point of more complicated nature than that found first. The slope of 

all isocline curves as they pass through the origin is the same, 

dz/dx • ax. 

A set of isoclines is plotted in Fig, 8 upon axes of z and x» 

For this figure, positive numerical values of the parameters are 

assumed as p = 1, bx = 1, so that also ax = 1. According to the 

j analysis based on variation of parameters, this value ax • 1 is just 

sufficient to lead to an oscillating solution about the singular point 

(x , z ) with the amplitude of the oscillation remaining constant. s  s 

Isoclines, calculated from Eq, (40), are plotted in Fig, 8 for several 

values of slope m, and line segments drawn through the isoclines 

have the corresponding slope. 

Several solution curves are sketched in, always cutting the 

isoclines with the required slope* The predicted oscillation about 

the singular point is seen to occur. Since the solution curve is not 

a circle, but is distorted, the solution for x vs. t is not a 

simple sinusoid, although it is periodic, A solution curve coming 

from a large positive value of x bends so as to approach the z-axis 

closely, but nover to cross it. This effect comes about from the very 

large positive damping occurring when x approaches zero from the 

positive side, as has been discussed previously. Because of this 

v action, a limit cycle appears. For the assumed values of bx and p, 
-• 
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a positive initial value of x leads to an oscillation about 

j£ the singular point. 

If x is initially negative, the solution curves sketched in 

Fig. 8 indicate that x always returns to zero with a value of z 

that goes to infinity. Presumably x will then pass through zero, 

with x infinite at that point, and become positive. As soon as x 

is positive, the solution curve spirals inward about the point x • p, s 

z • 0, as before. It appears, therefore, that regardless of the 

initial algebraic sign of x, ultimately it becomes positive. 

While the nature of the singularity at the origin cannot easily 

be studied so completely as was the singularity at x • [3, z • 0, 

it is evident in this example that the origin is an unstable point. 

For positive values of x, the origin is similar to a saddle point; 

for negative values of x it is similar to an unstable nodal point, 

III, 6, Approximate solution for negative x 

Some of the qualitative aspects of the solution obtained for 

negative values of x can be found through the following approximate 

analysis. The differential equation is 

(x2/2) x - -ex + x/bx + x = a/b (41) 

which is merely Eq, (9) with the coefficients rearranged. 

If x = 0, this equation reduces to Eq. (4),  having the exact 

solution given in Eq. (7), This latter equation, rewritten here for 

convenience is 

C!-l xx - |g + h axp(-at)|~ (42) 

» 
where    g a b/a    and    h » (x     ' - g),    with   x = xo    at    t • 0, 
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If T >0, but is small, an approximate solution for x can be ! 

found by an iteration process. The solution for x-,, given by Eq. (42) 

for x = 0, can be used with Eq. (41) for x>0, to give a new solu- 

tion for x as follows. From Eq. (41) the new solution is 

^ = xx + xx1-  (T2/2) XX (43) 

where x^ is an approximate solution, valid for x small. In writing 

this equation, x, is put in place of the third and fifth terms of 

Eq. (41), to which it is equivalent. 

A tentative conclusion from the isocline plot of Fig. 8 was that 

if x initially is negative, it always returns to aero, even if 

initially x is negative. In order for x to return to zero, x 

must become positive. If x is initially negative, there must be 

some instant at which it passes through zero as it changes sign. 

Thus, the time at which x = 0 is of interest. This; time can be 

determined approximately, making use of Eq. (43). The time derivative 

of this equation, with the assumption that x is small enough that 

the last term can be neglected, is 

*2 = *1 + ^^l* ^^ 

Derivatives of x~, found from Eq, (42) and used here, give 

i « ah exp(-at) CR(1 • ax) •*• h exp(-at)(l + ax)3       ^ 

^ [g -r  h exp(-at)] 3 

If x_ « 0, the requirement is that, approximately, 

exp(-at) = -(g/h)(l - 2ax) 

= (1 - 2ax)/(l - a/bxo). (46) 

If x = 0, the value of t from this equation is the same as that 

found earlier as the time for which x, starting with a negative value, 

goes to minus infinity. If x is made slightly greater than zero, the 

time for x? <• 0, given by Eq, (46), is also made larger. 
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The rate at which x changes, for T just greater than zero also 

can be estimated. If T * 0 and if the magnitude of x is small 

enough, it is given approximately by 

xx - xQ exp(at). (47) 

This equation results from Eq. (42) if jx I «a/b. This value of x-, 

used in Eq. (43) leads to 

(x, - x^/^ = ax(l - ax/2). (48) 

This equation gives the difference between solution x,, applying 

for x = 0, and solution x applying for T>0, but small. Since 

x, and Xp must have the same algebraic sign, the left side of 

Eq. (48) is positive if  x?!> 
xi U and negative if  x_ < jx, . It 

is evident from the right side of Eq. (48) that the fraction is positive, 

ard thus  x_ > x,!, for 0<ax<2; otherwise  x_ < Ix. 1. These 

conclusions apply only so long as the magnitude of x remains small 

enough. 

The result of this discussion can be summarized in Fig. 9* in 

* which x is plotted against t, with parameters a and b held 

constant. The initial values for both x = x  and x « x  are nega- 
o o 

tive, and both x  and x  are assumed the same for all curves. The * o      o 

indication is that unless T = 0, the curves for x always return to 

zero, and that the point where x = 0 occurs at later times as T is 

increased. If 0 <ar <2, the magnitude j x I initially increases 

faster than for T = 0, If ax>2, the magnitude | x  initially 

increases more slowly than for x * 0. The critical value, at »  2. 

separating these kinds of solutions is only approximate because of the 

crude method by which it was obtained. 
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III. 7. Solution by analog computer 

The differential equation, Eq. (9), was set up on a Reeves Analog 

Computer, using the system diagrammed in Fig. 10. Control of the 

parameters a, p (• a/b), and T is possible, as shown. The 

additional inverting amplifier must be used when negative values of x 

are being studied, so as to give the correct algebraic sign to the 

quotient term. The computer gives accurate results so long as x and 

its derivatives are not too larges and so long as x is not too small. 

If x approaches zero, the division in the nonlinear term is inaccurate. 

Some typical curves representing solutions for the equation are 

shown in the accompanying figures. In Figs. 11 and 12, a plot of x 

against t is shown. In both these figures, p = 20; in Fig, 11, T 

is varied keeping a constant, while in Fig. 12, a is varied keeping T 

constant. Initial conditions in both cases are x • +p/4 "5, 

x = y =0. When the product ax is unity, an oscillation about 

x = p occurs, with its amplitude decaying slovrly. The approximate 

analysis of Sec. Ill, 3. predicts a limit cycle for this value of ax, 

but with very small amplitude. A limit cycle of small amplitude may 

actually occur; it is difficult to decide from the computer solution. 

The period for the solution with ax •= 1 is quite close to that 

1/2 
predicted, T = 2^ nx. 

If product ax exceeds unity, the limit cycle with nonsinusoidal 

waveform becomes apparent. The waveform is similar to that predicted 

in Sec, III. 4. If product ax is small, the final value of x is 

approached raonotonically- Curves of x • x exp(at) and of x, as 

given by Eq. (7) for x = 0, are plotted in Fig. 11. These are limiting 

curves as x varies between zero and infinity. 
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Captions for Figs. 11-15 

These figures are all solutions for Eq. (9) obtained with the 

analog computer set up of Fig. 10, The conditions for the figures 

are as follows. 

11. a = 1/2, P = 20, x as indicated, x =5, x =0 

12. x = 2, 3 = 20, a adjusted to give value for ax as indicated, 

x =5. x =0 
O    '   0 

13• a. = 1/2, p -  20, T adjusted to give value for ax as indicated, 

x^ set to value indicated by circle, x = 0 
o '  o 

14* a = 1/10, p = 10, x as indicated, x = -5, x = -0,75 

15. a = l/lO, P =: 10, x as indicated, initial conditions as indicated 

by circle 

1 
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In Fig, 13 are shown several phase-plane curves for y plotted 

7 againat x, Cn each diagram are shown solution curves for several 

initial values of x , always with yQ  = 0. The initial points are 

indicated with circles. The limit cycle for ax = 1,4 is evident, 

and a limit cycle of small amplitude may occur for ax * 1, The solu- 

tion curve for T • 0, given by Eq. (4), is plotted for comparison 

on the diagram for ax = 0,35, Here, y jumps quickly from its 

initial zero value to a value near that which would have to exist 

with the case of x = 0, 

The phase-plane curve obtained here for ax • 1 has a different 

vertical scale from that of Fig. 8, since the vertical coordinates 

are z and y^    respectively. Otherwise the curves are very similar. 

In Fig, 14, a plot of x against t is shown, with the initial 

value x  being negative. Parameters were chosen as a = l/l0> 

3 - 10, so that b * 1/100. The initial value of x is x - -5. 

A curve, calculated from Eq, (7) for T = 0 is shown for comparison. 

The initial slope of this curve, y = -0.75, was used as an initial 

condition in obtaining the other curves also. The curve for x » 5, 

ax =» 0,5, is seen to depart from zero more rapidly than the curve for 

x • Oj the curve for x = 20, ax • 2, leaves zero more slowly. 

Phase-plane curves of y plotted against x are shown in Fig, 15, 

again for negative values of x. Once more, the curve for x = 0, 

calculated from Eq, (4)> is shown for comparison. If x is small, 

the solution curve either rises or falls abruptly, dependent upon 

whether the initial point is just above or below the curve for x • 0, 

If x is larger, a slower change occurs, but the return to x -  0 is 

4 evident. The curves of Figs, 14 and 15 agree with the qualitative 

conclusions of Sec. 111,6. 
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IV. Differential-Difference Equation 

IV. 1, Comparison with differential equation 

The original nonlinear differential-difference equation, Eq, (3)> 

was replaced by a nonlinear differential equation, Eq. (9)> for the 

analysis of Sec, III, The differential equation wa3 obtained by 

replacing the difference term in the original equation by the first 

three terms of a Taylor's series, Eq, (8), The two equations should 

yield similar solutions so long as the Taylor's series approximates 

the difference term well. The approximation is good provided the time 

delay T is small enough that the terms omitted from the series are 

small compared with those retained. In particular, it is necessary 

that  (1^/6) d3x/dt3  be much smaller than  (T
2
/2) d2x/dt2 , and 

so on. This inequality holds if T is sufficiently small. If T is 

larger, it is unlikely that the approximation is valid. Solutions 

for the two equations then would be expected to differ by significant 

amounts. 

An estimate of the magnitude of the terms can be found from the 

approximate solutions of Eqs, (36) and (37)• If product ax is 

slightly larger than unity, approximately x • p(l + sin at). Then 

x • -3a2 sin at and x* - -pa3 cos at so that (T
3
/6)X' - 21'2p/3 and 

(T*"/2) x = 3, where only the amplitudes appear in the last two rela- 

tions. Thus, the first term omitted in the series has an amplitude 

about one half that of the last term retained, and the approximation 

is relatively poor. If product ax is larger, the solution changes 

more abruptly with time, and higher-order derivatives are larger. 

The approximation could be expected to be even less accurate. 
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Furthermore, the differential-difference equation is equivalent 

to a differential equation of infinite order, which may have an infinity 

of modes of oscillation* The approximate differential equation, of 

second order, can have only a single mode of oscillation. It is not 

difficult to see how the various modes for the difference equation 

can arise. 

The analysis of the differential equation has predicted that if 

product ax exceeds unity, a limit cycle appears, leading to an 

oscillation of period T as shown in Fig, 16. This solution can be 

assumed to apply to the differential-difference equation, also. 

According to this latter equation, the value of x at some time t 

depends, in part, upon its value at the earlier time (t - x). If 

for example, the time (t - T) is zero, time t at which x is 

determined, can be t = T, (T + T), (T + 2T), . . . . (x + nT). 

For any of these times, the same result must be obtained for x, 

because of the periodicity of the solution. The same steady-state 

solution results if the original delay time is increased by any 

integral multiple of the period. The solution of Fig. 16, then, can 

be obtained for fixed values of parameters a and b, and an infinity 

of values for T. The period and waveform remained unchanged. 

If all three parameters, a, b, and x, are fixed, a variety of 

steady-state solutions also may occur. An example is shown in Fig. 17, 

where the waveforms are merely sketched roughly. If the product ax 

is large enough, a violent oscillation of long period, T, « x/k, may 

occur, where k is a constant. If ax is just larger than unity, 

1/2 the period of the oscillation has been shown to be T » 2  rrx, so 

that k * (2 '  TT)  • (4*44) "*"• Fcr larger values of ax, k will 

be smaller, but the effective time delay remains in the order of 1/4 
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F19.lt>.   Periodic  solution   obtained with different delau   kimes, 

FKJ.17.   TWO   different periodic solutions   obtained    with 

the same   parameters. 
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, of a period. For an initial value of ax sufficiently large, another 

steady-state oscillation may occur, with period T? • T/(1 + k). The 

effective time delay is then in the order of 5/4 of a period, and the 

period of the second oscillation is about 1/5 that of the first. The 

waveform of the second oscillation is determined by the product air', 

where the value of T
1
 is the least delay that could give the 

observed oscillation, or about 1/5 the actual value of x. Thus, the 

waveform of the oscillation of shorter period depends upon the quantity 

air/5, approximately, and if there is to be a steady-state oscillation 

this quantity must be large enough to lead to a limit cycle, that is, 

somewhat larger than unity. The oscillation of longer period will have 

its waveform dependent upon ax, which will be greator than five, and 

the waveform will involve large peaks and violent changes. 

If product ax were sufficiently large, a whole sequence of 

steady-state oscillations of this sort might be obtained, each having 

a different period and a different waveform. Suitable and rather 

special initial conditions would be required to start 3uch oscillations, 

however. It is likely that only the oscillation of longest period 

will actually occur in any physical system to which the equation 

applies. 

IV, 2, Solution by analog computer 

The differential-difference equation is difficult to set up on a 

simple analog computer because of the necessity for introducing the 

time delay x. This delay time would have to be reasonably long in 

comparison with the period of oscillation of th*„ highest frequency 

that can be handled by the computer. It is not easy to set up a system 

with the available components so as to obtain the necessary delay. 
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In order to avoid the need of introducing a time delay in the 

computer itself, a step-by-step computation was used. The computei 

was used to solve the equation 

dx(t)/dt = [[a - b x(tQ + At/2 - x)] x(t)        (49) 

in place of Eq. (3). In Eq. (49), At Is the time interval during 

which computation occurs and t  is the time at the beginning of the 

interval. In the bracket, a constant value for x is used, evaluated 

at the delay time x earlier than the average of the time during the 

interval. If the time interval is chosen small enough, this procedure 

should lead to accurate results. It suffers, of course, from the 

usual errors of step-by-step computations. 

The computer was set up as shown in Fig. 18, The procedure is to 

put into the multiplying circuit of the computer the value of 

x(t + At/2 - x). The value of x(t ) is put into the integrator as 

an initial condition. The computer is allowed to run for the time 

interval At, after which the value of x(tn + At) is read. This 

new value of x is then used for new initial conditions with the 

next time interval, and the procedure is repeated. In this way 

successive points for a curve of x versus t can be obtained, 

A family of curves found in this way is shown in Fig, 19, where 

x is always positive. Numerical values for the parameters were x • 18, 

3 • 20, and At = 4. Parameter a was adjusted to give product ax 

the indicated value. The initial value of x at t -  0 was taken as 

x « 2, It vras assumed further than x had this same value during 

the four intervals At preceding t «= 0. This assumption gives x 

the constant value, x = 2, during the time -16 < t < 0, after 

which x begins to change. With a value of x as small as this, 
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Captions for Figs, 19-20 

These figures are solutions for Eq, (3) obtained with the analog 

computer set up of Fig, 18. The conditions for the figures are as 

fallows, 

19. T * 18, 3 • 20, Lt *••• 4, a adjusted to give value for &i    as 

indicated, x = 2 for -16 £ t < 0 

20, T • 18, 3 • 20, At = 4, a adjusted to give value for ax as 

indicated, x * -2 for -16 <£ t ^ 0 

J 
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in comparison with 3 = 20, the exact valus used in starting the 

computation does not influence the resulting solution curve very much. 

The curves of Fig, 19 for the differential-difference equation 

are similar qualitatively to those of Fig. 12 for the differential 

equation. The period of the oscillation is similar for a given value 

of product ax. However, the minimum value of ax leading to a 

limit cycle for the differential equation, ax = 1, is less than that, 

ar • 1.6, needed for the differential-difference equation, A differ- 

ence of this sort is not unexpected, however, because of the approxi- 

mation that was used in getting the differential equation. In the 

appendix i3 given a discussion which might indicate the limit cycle 

would first appear near ar • TT/2. 

Another family of curves, with x negative, is shown in Fig, 20, 

The same numerical values of the parameters were used in obtaining 

Fig. 20 as in Fig. 19, except for the initial value of x. For Fig. 20 

it was assumed that x - -2 for the time -16 < t <0. The curves of 

Fig. 20 show the expected shape, with x becoming an increasingly 

large negative quantity as t increases. The rate of increase 

depends upon the value of parameter a. The monotonic increase of 

the curves of Fig. 20 is again different from the solutions for the 

differential equation, shown in Fig. 14, where x always returns to 

zero. Again, this results because of a basic difference in the two 

equations. 

V. Conclusion 

The differential-difference equation has been approached in a 

variety of ways, and a number of approximate solutions for it have been 

obtained. Most complete information comes from the differential equa- 

tion that is approximately equivalent. Information about the solution 

is summarized in Tables 1 and 2. 
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Table 1 

Differential-Difference Equation 

1. Form:      dx(t)/dt = [a - b x(t - T)~| x(t) (3) 

a, b, T are positive real constants 

2. Equilibrium conditions: 

x(t) • x(t - T) = 0,  unstable 

x(t) = x(t - T) = a/b,   stable with, perhaps, a limit cycle 

3. Algebraic sign of solution:  solution cannot change sign 

4« Exact solution for x  = 0: 

x • [b/a + (x^1 - b/a) exp(-a ;J""
1
 . (7) 

5» Approximate solution for x>0: qualitatively similar to solutions 

for the differential equation, Eq. (9). See Fig, 19. 

6. Probable value of ax for oscillation, x^>0: a-r> 1/2, 

this value is estimated 

7» Probable value of a.x    for a limit cycle, x> 0: ax>n/2 

S. Solution for x<0?  solution always gees to x « -oo . See Fig, 20. 

1 

Tl' - 
n 
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Table 2 

Differential Equation 

1. Form:      x* - a2x* + a2 */bx. + a2 x = a2p (9) 

a = 2/x , 0 = a/b, where a, b, x are positive real constants 

2. Equilibrium condiLions: 

x • 0> x = 0,   unstable 

x = a/b, x = 0,   stable with, perhaps, a limit cycle 

3. Algebraic sign of solution: Starting with either sign, solution 

always becomes positive. 

4* Exact solution for x = 0: 

x = [b/a + (x^1 - b/a) exp(-at)]"'1 (?) 

5. Approximate solution for   x>0: 

For V$<ax<5/4: 

x = p + A(t)   sin(2^2t/x + 6 ) (2?) o 

A(t)  =  [q/p +  (AQ~2 - q/p)   exp^pt)]""1/2 (25) 

p • (ax )       (ax - 1),      q = b '/4a x 

at    t=0,    A = A ,    «=«. ' o' o 

In steady state,    l<ax<5/4: 

x = p + A sin at - aA2/6bp2 sin 2at + •  •  •  • (37) 

See Fig, 12 

6. Probable value of    ax    for oscillation,    x>0: 

ax>(21,/2 - I)  - 0,414 

7. Probable value of ax for a limit cycle, x>0: 

ax>l 

8. Solution for x<0:  solution always ultimately returns to 

- 
' 

x = 0 and becomes positive, with x = oo at x = 0, Nature of 

solution depends upon parameters of equation and initial conditions. 

Sea Fig. 14. 
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Appendix A. "ethod of Equivalent Linearization 

i ' There is yet another method that is sometimes useful in finding 

an apprcoumate solution for an equation that cannot be solved exactly. 

This is the metiod of equivalent linearization, sometimes referred to 

under the names of Kryloff and Bogoliuboff, ^,J"  It can be applied 

to the equation under discussion here, wi ch is 

dx(t)/dt - [a - b x(t - x) ] x(t). (3) 

Under some conditions this equation has been shown to have steady- 

state solutions> oscillating about a mean value. 

The procedure is to assume a solution of the necessary form 

I x(t) = P + Q sin cut (A»l) 

where P, Q> and co are all constants to be determined. The 

assumed solution is then substituted into Eq, (?), giving 

2  12 Qco cos cot a (aP - bP - ~ bQ~ c>s <ox) 

+ (aQ - bFQ ~ bFQ cos cox) sin cot 

+ (bPQ sin cox) cos cot 

1  2 
+ -r  bQ (cos cox cos 2cot + sin cox si.i 2cot)» 

It is argued that this equation must be valid fcr those components of 

zero frequency and the fundamental frequency, and terms of frequency 

higher than the fundamental are ignored. The following three relations 

are thus obtained, 

2  12 "* constant: aP - bP - — bQ cos cox = 0 ' 
——————- £ i 

i 

sin cot:   aQ - bPQ - bPQ cos cox • 0   } (A,2) 

cos cot:   Qco - bPQ sin cox • 0 

These equations are not correct if x • 0, since then co * 0, and 
• 

the term in cos 2cot becomes a constant and must be considered. 

15* M, Minersky, ref, 7, Ch. XII 

16. F, E. Bothwell, Econometrica, 20, 269, (1952) 
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The relations can be rearranged to give 

sin wx • 2aco/(a + u) )      I 

,2       2W, 2 A 2>  ( ^A*3^ cos CUT * (a - w ;/(a + <D J y 

P - (a2 + u2)/2ab (A.4) 

Q - 21/2 P. (A.5) 

These equations must be satisfied simultaneously, and can be solved 

for the necessary values of u), P, and Q» 

It is evident from the transcendental form of Eq, (A.3) that an 

infinity of values of to, the angular frequency of oscillation, are 

allowed. This is the result expected, since the original equation is 

equivalent to a differential equation of infinite order. However, the 
I 

relation between P and Q, Eq. (A.5), cannot correspond to a correct 

solution for Eq. (3). It requires that Q exceed P, so that 

instantaneous values of x always change sign twice during a cycle of 

the oscillation, something which cannot occur. Furthermore, Eq. (A.4) 

indicates that the amplitude of oscillation is larger for a higher- 

frequency mode of oscillation, which seems to be unreasonable„ 

If product ax • n/2, Eq. (A.3) predicts that CJ,T = rr/2 • 1.57, 

and Eq. (A.4) predicts that P, » a/b. This result agrees fairly 

well with the discussion of Sec. III. 3 where for ai near unity, it 

1/2 was found that WT • 2   *= 1.41 and the mean value of the solution 

is p • a/b, A second value of ore, allowed by Eq. (A.3) with 

ax • n/2, is about w„x • 9^1 or approximately, OJ_ » 5.3 w.. This 

result is also about what is expected, with the ratio of the first two 

frequencies of oscillation being in the order of five to oncc The 

value of P for this second frequency, from Eq. (A.4)> is predicted as 

2 
4U 

P9 ~ 1? a/b, and this seems far too large. Furthermore, numerical 
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values found from Eqs. (A.3-5) do not appear reasonable for values of 

product ax differing from &t  = n/2. 

The conclusion must be drawn that this method of solution yields 

results of some utility only for a narrow range of values of product 

ax near ar « IT/2. Most likely this is about the value of product ax 

which first gives a limit cycle in the solution of the differential- 

difference equation. In general, however, the method gives results that 

seem quite unreasonable. Presumably this occurs because solutions 

for Eq. (3) are sufficiently non-sinusoidal that the assumed form of 

Eq. (A.l) is far from correct. 

*- 
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-i Appendix B. Approximate Solution for ax»l 

An exact solution for Eq. (3) with the time delay equal to zero 

was found in Sec, II. Solutions with values of product ax in the 

order of unity were found in Sec. IV. It is of interest to explore 

the nature of the solution if ar becomes very iar&s. 

It was shown in Sees. Ill and IV that if ax is sufficiently 

large, the solution is periodic with the period T. The oscillations 

are nearly sinusoidal for ax just large enough to give the periodic 

solution, and become violent relaxation oscillations for a-r very 

large. Always, however, the mean value, X, of the solution is the 

same, 3 » a/b * 0, This relation can be shovm a.s  follows. 

Equation (3) can be vritten as 

| ^^-a-bx(t-x). (B,l) 

If the solution is periodic with period T, both sides of this equa- 

tion can be averaged over a period to give the relation 
T        T 

T I l^t} = I f[a " b X(t " T)]at« (B'2) 
'o       'o 

Because of the periodicity, the integral on the left side of the 

equation is zero. Also, the mean value of the oscillating solution is 

T T 

'o 

Thus, Eq. (B.2) becomes 

0 « a - b x 

X - (1/T) j   x(t) dt - (1/T) / x(t - -0 dt.        (B.3) 

^_ ' This fact was observed by L. Onsager (ref. 3, p. 237), The deriva- 
tion given here was suggested by P. M. Schultheies, 

* . 
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x • s/b « p. (B.A) 

This equation is valid for any periodic solution. 

As product ar is made large, a plot of the solution for iSq, (3) 

approximates the shape sketched in Fig. B.l, whei*e the time origin is 

chosen at the point at which x crosses the value x = 3 as it 

increases in magnitude. The rise from x = 3 to the maximum value, 

x  , takes place almost linearly. The drop from x   to a very max*     l " max       * 

small value, nearly x = 0, takes place very abruptly. The solution 

stays at a small value most of the remainder of the period, and then 

begins to rise again rather suddenly. The shape of Fig, B,l is consid- 

erably simplified, of course; the actual solution curve does not change 

value discontinuously. 

At the time t = 0 in Fig. B.l, x = p, and the value of x at 

the earlier time, (t «• T) » (~t), is essentially zero. Thus, at 

t » 0, the slope of the solution cuive is almost dx(o)/dt = afi, from 

Eq» (3)* It is assumed that this slope is maintained over the inverval 

0 K t < T. At the end of the interval, t = T, and from Eq, (3), 

the slope must vanish, dx(T)/dt « 0, since x(t - T) => p. Thus, at 

t • T, x has its maximum value, x   • kB, this relation defining max 
the constant k. The combination of the known slope for the solution 

curve, maintained over the known time interval, allows the value of k 

to be determined as 

dx/dt - ap - (k - l)p/r 

or 

k = (1 + ax). (B.5) 

Thus, the maximum value of x is 

x   - (1 + ax)p. (R.6) 
iliCfeA. 
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Since it was shown in Eq, (B.4) that the mean value cf the 

4, periodic solution is constant, the positive and negative areas between 

the solution curve and x • x » 0 must be the same in magnitude* 

Thus, the relation can be written 

T(k - DB/2 = (T - T)0 

or the period is 

T = (k + l)x/2 = (1 + aT/2)x. (B.7) 

Equations (B.6) and (B,7) can be used for sketching the approximate 

shape of the solution curve, provided product ax is known and is 

sufficiently large. Probably the maximum value of x, given by 

Eq, (B,6), is reasonably accurate for ax > 2. The period, ^iven by 

Eq, (B.7), probably is not very accurate unless ax > 10, however. 

The poor accuracy in this latter equation results from the assumption 

of discontinuous jumps in the solution, and these approximate the 

actual solution well only if ax is quite large. 

An estimate of &he ratios (xma^/g) and (T/x) for periodic 

solutions of Eq, (3) is shown in Fig, B.2. These estimates are based 

on the solutions found in Sees, III and IV fox* ax near two, and upon 

the equations just developed for ax very large. Because of the 

wide range in values of x which occurs when ax is large, it has 

not been possible to check these estimates quantitatively upon the 

analog computer. 

, 
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Fig. B.l  Approximate solution for Eq. (3) with ax very large. 
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Fig. B.2  Estimated period and maxiiaun value of solution for Eq. (3). 
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